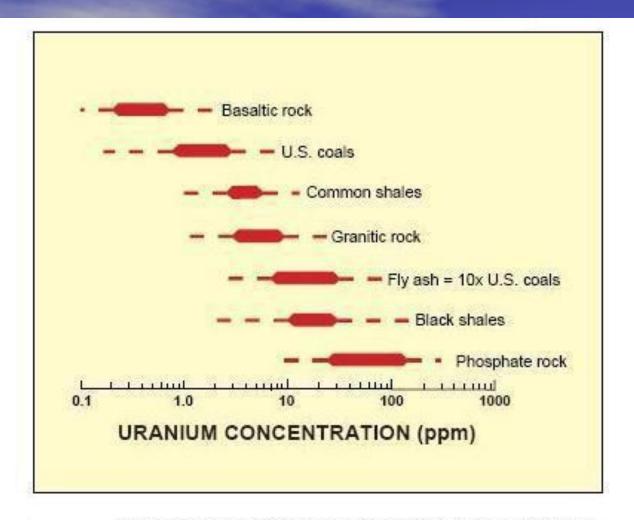


**Consultants Inc.** 

Adj. Asst. Prof, Ohio State U. Food, Ag & Bio Eng.

> **An Ohio Fracture Flow Working Group Presentation**

### 2013 Focusing on Shale Gas Wastes


- Ground Shale Rock: hydrocarbons, heavy & radioactive metals, Ohio-NORM, <u>US EPA-TENORM</u>
- Drilling Muds: who knows what, TENORM
- Fracking Fluids: water, sand, who knows what, if recycled, are they TENORM?
- Brine: salts, hydrocarbons, heavy & radioactive metals, Ohio-NORM, US EPA-TENORM
- Drilling Site Wastes & Accidental Releases: who knows what is being released
- Where are they coming from?
- Where are they going?

# Why the Current Concern?

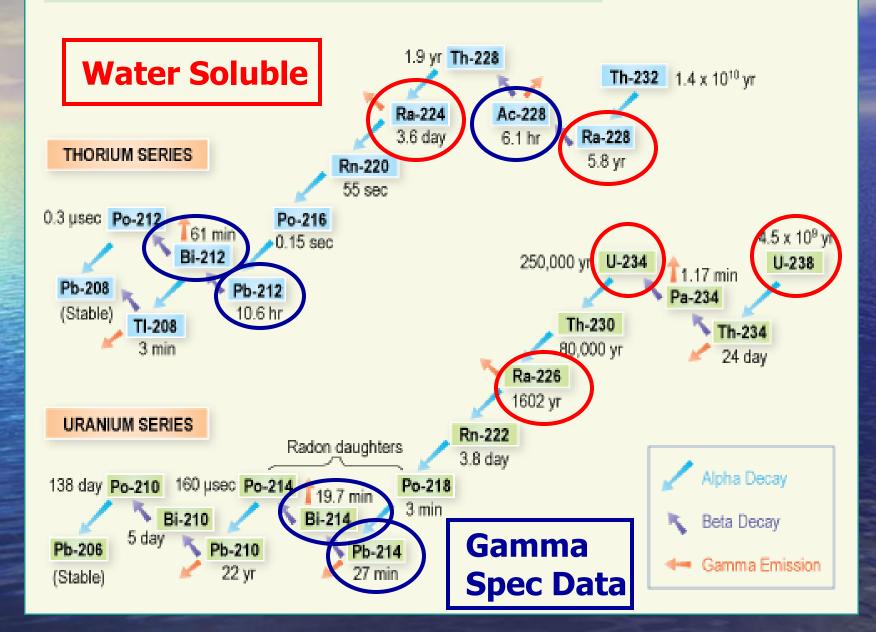
- Ohio has paid for State & Local governments
   by taxing (tipping fees, etc.) out of state waste
   streams (solid, C&DD, industrial, medical, O&G, etc.)
   for last 20+ years
- Shale Gas drilling has created a big, new waste stream not addressed by surrounding states seen as a new & easily captured revenue source by Ohio's Administration
- Ohio DOES NOT have magic GEOLOGY
  - that can swallow all wastes without repercussions

### Why the Current Concern Cont?

- Blacks shales are early sources of Uranium ore for the "Atomic Age" (Chattanooga Shale, TN; USGS, 1961)
- Black shales like coal are full of heavy and radioactive metals: <sup>232</sup>Th to <sup>228</sup>Ra & <sup>238</sup>U to <sup>226</sup>Ra are most common series
- 228Ra, 238U & 226Ra water soluble, also in brines
- US EPA limit on Uranium mill tailings, 5 pCi/g because of the Radium: > LLRW Landfill, Utah or Washington State accept NORM
- US EPA Drinking Water MCLs 5 pCi/l for Radium



Typical range of uranium concentration in coal, fly ash, and a variety of common rocks.


Figure 1. Graph from Radioactive Elements in Coal and Fly Ash: Abundance, Forms, and Environmental Significance. U.S. Geological Survey Fact Sheet FS-163-97. October, 1997

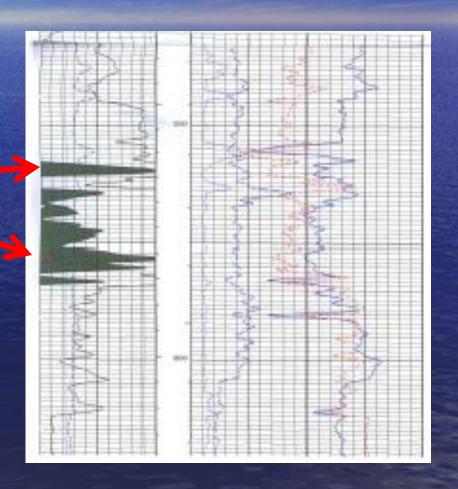
# Why the Current Concern Cont?

- Very limited chem data (gamma) for Utica shale, TENORM & brines: 100's to 1,000's X 5 pCi/g or L
- PA DEP Marcellus Shale U content: 10-100 ppm
- Uranium-238 content: ~3.4 to 34 pCi/g
- Radium-226 content: ~ 3.4 to 34 pCi/g
- Frac Water Ra-226: 300 to 9,000 pCi/I
- PA Marcellus brine chemistry up to 3,609 x MCLs for radioactivity: 5 pCi/I US EPA
  - USGS reports median levels Ra >3x PA brines from conventional wells

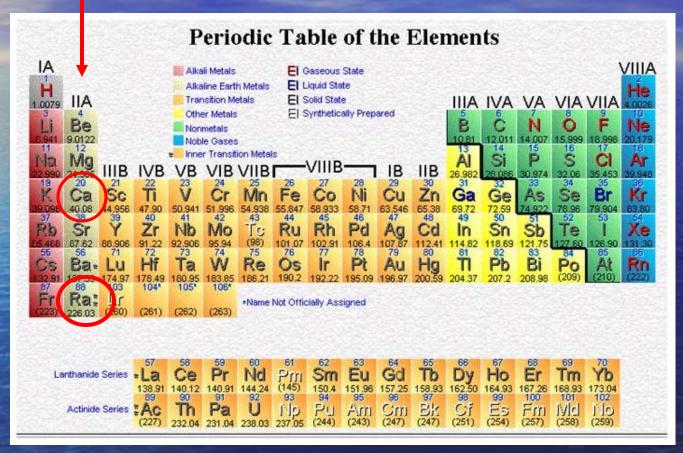
#### Radioactive Decay in Thorium and Uranium Series






### Why the Current Concern Cont?

- ONY brine up to 15,000 pCi/L
  226Ra
- Pipes up to 6,000 pCi/g <sup>226</sup>Ra and up to 2,000 pCi/g <sup>228</sup>Ra
- Ohio still contaminated from the Manhattan Project
  - we know better now




# Radioactivity = TOC = Gas

- Gamma Ray
   signature shows
   highest levels of
   radioactivity in the
   shale
- Horizontal laterals installed in hottest zones
- Shale cuttings are from hottest areas



### 5 pCi/l MCL: Why the Health Risk?



Because water-soluble Radium replaces Calcium in your bones if you drink it

# Shale Gas Wastes: A Growth Industry for Ohio

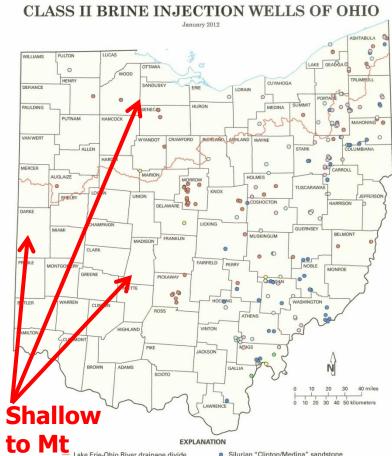
- Wastes coming into Ohio by road, rails & soon by river barge, port Washington Co. in place
- Over 52% 2012 injections in Class II wells came from out of state, mostly PA & WV
- Dedicated out-of-state Class II wells being installed in SE Ohio (new one Athens Co.)
- No Public Hearings being held for anyone
- With NY still to be decided & barge ports for Ohio River/Gulf wastes coming on line
  - may be up to 80% out of state wastes in a few years

# Shale Gas Wastes: A Growth Industry for Ohio cont.

- Ground Shale Rock with drilling muds to Solid Waste and C&DD Landfills; no records of how much or where, just listed as "solid wastes"; used as daily cover, not buried
- Class II wells except when spread on roads (brines), "solidified" and put in landfills or other management processes yet to be determined
- ODNR Div. Oil & Gas Resources calls the shots; OEPA and ODH are second

# New ODNR OEPA ODH Regulation Chart

- Waste Streams Generated During the Exploration and Production for Oil and Natural Gas
- Summary of Potential Regulatory Oversight, January 2013
- www.epa.state.oh.us/portals/34/document /NewsPDFs/Oil-Gas Waste Matrix Jan20132.pdf
- Check it out


# **Class II Injection Wells**

Class II Injection Wells
 Revisions

(above Pre-Cambrian basement rock now)

Seismic rules added by emergency in 2012 to lift moratorium, 30+ waiting applications being processed & approved

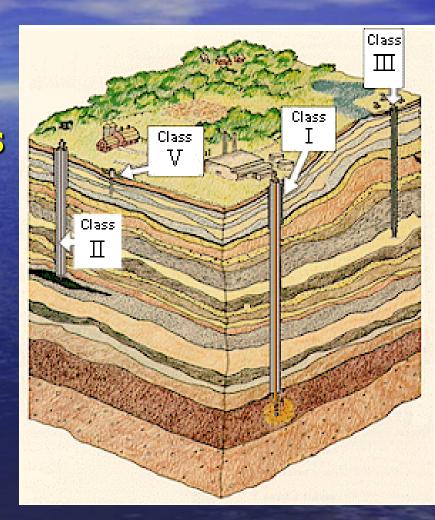
 Check new web site often www.oilandgas.ohiodnr.gov STATE OF OHIO . DEPARTMENT OF NATURAL RESOURCES



Lake Erie-Ohio River drainage divide
 Mississippi sandstone

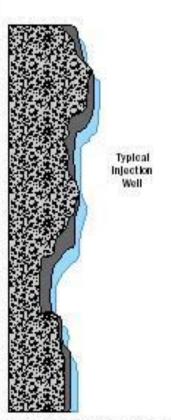
Silurian/Devonian "Big Lime" interval

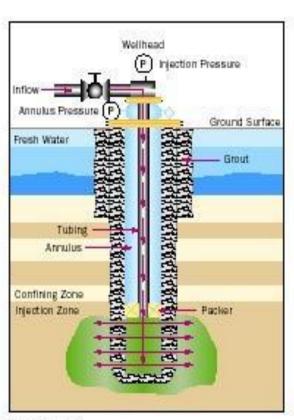
SIMO Revonian Berea Sandstone


- Ordovician shale and limestone
  - Ordovician shale and limestone
  - Cambrian/Ordovician interval
  - Multiple injection zon
  - Permitted locations

ended citation: Ohio Department of Natural Resources, 2012, Class II brine injection wells of Ohio: Ohio Department of Natural Re Division of Geological Survey and Division of Oli and Gas Resource Management, page-size map, scale 12,000,000.




### What are Class II Injection Wells?


- Class I Hazardous
   Waste
- Class II Oil & Gas Fluids
- Class III Solution
   Mining of Minerals
- Class IV now banned
- Class V Stormwater, etc.
- Class IV CO2Sequestration



# Why Do We Have Them in the First Place?

#### DIAGRAM OF INJECTION WELL





SOURCE: Adapted from the National Energy Technology Laboratory.

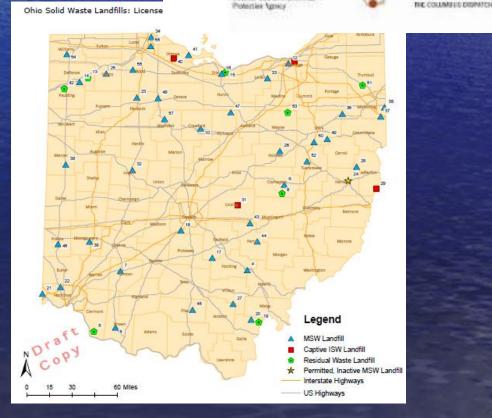
- Originally used to rehabilitate old O&G fields
- Converted production wells in field to be rehabbed
- Brine & other fluids injected back into field to force out remaining product
  - Called "Flooding"

- Limited Site Visits by Operators
  - can be operated 24-7-365
- Surface & Near Surface Spills
  - from valves, lines & tanks
- Compromised Spill Protection
   Systems
- Structural Failure Over Time
  - Casings and Cement
- Earthquakes, increases w/ increase in pressure
  - (National Resources Council rept., www.nap.edu/catalog.php?record\_id=13355)

How Do

They Fail?

### Do We Even Need Them?


- Important for SS & LS O&G well field rehabilitation
  - but not for shale gas production
- All other uses
  - long term, probably not
- Planning now for the short term & intermediate futures

### Landfilling the Wastes

Legal disposal for shale rock cuttings, drilling muds and associated wastes **Currently HB 59** requires downblending if Ra levels above MCLs for TENORM only

Press releases do not indicate that chemical binding of radioactive materials to dilution materials must occur

# Ohio's debris landfills The Ohis Environmental Protection Agency found high invels of pollutarits in the water in 30 detris landfiles. Relation Cleveland FALLSBURG ROAD LANDFILL Columbus Solutions Solutions Sayoo: Oho Environmental



# But are they LLRW Landfills?

- No solid waste and C&DD waste landfills in Ohio meet our siting & design criteria for LLRW disposal
- OSU Extension
   Research "Low Level Radioactive
   Waste Fact Sheet
   Series" (RER-00)
   explains why



Cement vaults above ground, wastes drummed, overpacked and sealed

Ohioline.osu.edu/rer-fact/

# Other Solutions for Brine Disposal Sure to Reach the Water

Ben Lupo, president D&L Energy/Hardrock Excavation admits to at least 250,000 gallons of brine & oil-based muds dumped into the Mahoning River, 2012-2013

Use for deicing on winter roads still legal in parts of Ohio



# **Recycling of Fracking Fluids**

- Chesapeake in Carroll County, Ohio
- Range Resources in PA
- Consol/Epiphany/PMC Biotech solar powered recycling pilot plant started in July 2012 in PA
- Number of others as well

Why? Because they need the water for the next well & savings on reclaimed chemicals

### **Potential Problems from Recycling**

- Recycled fracking fluids need to be filtered
  - to remove sand, rock cuttings, etc. before being reused
- Filtered materials go to landfills
- Reusing the fluid increases the levels of Radium each time through, not removed
- Eventually TDS etc. so high that fluid must be disposed of in Class II wells anyway
- Ohio not collecting information on Recyclers
  - who/where they are, how they collect fluids, how dispose of wastes

# Repurposing of O&G Brine

- Almost everything in O&G brine has an industrial application & a current market
- Already "mine" salts in Ohio for industrial applications
- DOE/GE working on process to remove Radium-228 and 226 from brine
- Technology already exists to break O&G brine down, working on economics
- Why dispose of resources we need & would have to make/extract in other ways for other costs?
- Ohio could still extract "tax" for out-ofstate brine if reprocessed here, real jobs for Ohio

# Contacts for this presentation & Ohio Journal of Science Papers

OFFWG, Dr. Julie Weatherington-Rice, B&W, OSU FABE, weatherington-ri.1@osu.edu

OFFWG, Dr. Ann Christy, OSU FABE, christy.14@osu.edu

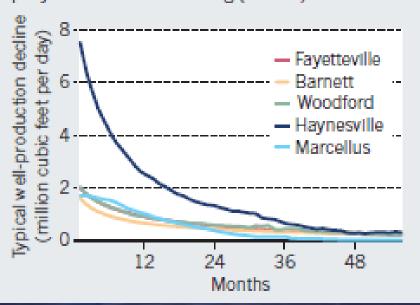
Bennett & Williams, Linda Aller RS, Laller@bennettandwilliams.com

Ohio Journal of Science Web Link at OSU, https://kb.osu.edu/dspace/handle/1811/686

Ohio EPA Division of Drinking and Ground Waters Source Water Assessment and Protection Program,

www.epa.ohio.gov/ddagw/swap\_ssa.aspx




Keeping Ohio's Water Clean
Ohio Fracture Flow Working

Group

# Even Without Disposal Issues, Does it Make Current Economic Sense to Drill? Drilling Costs

#### TOP FIVE SHALE PLAYS

Five US fields produce 80% of shale gas. The output of a typical well drops 80–95% in its first three years (top). Average well output across a field peaks and then falls as prime spots are used up (middle). Total field production falls 30–50% per year without new drilling (bottom).



- Drilling Costs
   \$42 Billion/yr
   to maintain
   production
- Dry Gas Sales~\$33 Billion/yr
- Some additional value from wet gases

JD Hughes, 2013, Nature vol. 494

# How long to Protect from human interaction if use Michigan's 50 pCi/g limit

- 50 pCi/g Radium-226 (1,609 yrs/1/2 life) to 5 pCi/g is 3+ half lives, ~5,000 yrs, beginning of Egypt's pyramids
- 50 pCi/g Uranium-238 (4.468 Billion yr/1/2 life, from almost the birth of the earth until now 1 ½ life) to 5 pCi/g, so 3+ half-lives, back to the beginning of the Universe
- 50 pCi/g Thorium-232 (14.05 Billion yr/1/2 life, longer than the age of the Universe until now 1 ½ life) to 5 pCi/g, ~45 Billion years, more than the diameter of the visible universe